Low Complexity D LATCH Based CSLA for Speed Critical Applications

SAILAJA SOLLA
PG Scholar, Dept of ECE
Pydah College of Engineering and Technology
Visakhapatnam, AP, India

YELLITHOTI SRAVAN KUMAR
Assistant Professor, Dept of ECE
Pydah College of Engineering and Technology
Visakhapatnam, AP, India

Dr. RAMESH CHALLAGUNDLA
Professor & Principal, Dept of ECE
Pydah College of Engineering and Technology
Visakhapatnam, AP, India

Abstract: The Carry Select Adder is used in many systems to relieve the problem of carry propagation delay which is happen by independently generating multiple carries and to generate the sum then select a carry. Due to uses multiple pairs of Ripple Carry Adders (RCA) to generate partial sum and carry by considering carry input However, the CSLA is not time efficient, then by the multiplexers the final sum and carry are selected. The basic idea of this work is to achieve high speed and low power consumption by use Binary to Excess-1 Converter (BEC) instead of RCA in the regular CSLA. At the same time to further reduce the power consumption, a new approach of CSLA with D LATCH is proposed in this project.

In the proposed scheme, before the calculation of-final-sum the carry select that is specified as CS operation is scheduled. For logic optimization of Carry selection bit patterns of two anticipating carry words that is corresponding to cin = 0 and 1 and fixed cin bits are used. Using optimized logic units an efficient CSLA design is obtained. The proposed Carry Select Adder design involves significantly less area and power than the recently proposed BEC-based CSLA.

Keywords: CSLA; RCA; BEC; D-LATCH;

I. INTRODUCTION

Now days the portability of the electronic component have rapid growth, the low power arithmetic circuit has become very important in VLSI industry. In The digital signal processor (DSP) main building block is the Multiplier-Accumulator (MAC) unit. Full Adder used as a part of the MAC unit uses full adder as part which can significantly influences the efficiency of total system. Full Adder circuit is necessary for low power application due to the reduction in power consumption. The basic operation Carry Select Adder (CSLA) is parallel computation. CSLA generates many carriers and partial sum. Multiplexers select the final sum and carry. In the CSLA architecture, Addition operation usually trembles widely the overall performance of digital systems and a crucial arithmetic function. The adders are most widely used in the electronic applications. In the year 2002, a new concept of adders are come into existence those are called as the hybrid adders and those are used for increases the speed of addition process by Wang et al. the adders gives hybrid carry look-ahead/carry select adders design. In 2008, the new hybrid full adders are used for designing low power multipliers. In digital adders, the speed of addition is mainly based on the propagation delay, it is having the limitation by propagating delay through adder. In VLSI Design one of the most important researches is the area and power optimized data path logic systems. The adders are most widely used in electronic system and applications. If we want design multipliers the concept of adders comes in to the picture because the adders are part of the multipliers designs. As we know millions of instructions per second are performed in microprocessors. In the microprocessor device area and power consumption are the most important factors in the designing multipliers and adders. The power consumption and area should low in the microprocessors. Devices like computers Mobile phones, Laptops etc... Those achieve more battery backup. So, a VLSI designer has to make perfect these parameters in a design. These are main constraints, so these are very difficult to achieve so the constraints have to be made depending on demand or application of the circuit in the industry. The N full adders used in this architecture link together with N bit Ripple carry adder. In the ripple carry adder operation the carry out of previous full adder becomes the input carry for the next full adder. Like that sum and carry calculated at the end of the last full. As carry ripples from one full adder to the other, if the size of the full adder is high then it has a more delay.

II. OVERVIEW

The project consists of an efficient VLSI implementation of optimized power efficient CSLA
using D-Latch. A novel and efficient VLSI architecture is proposed and implemented for carry select adder.

The VLSI architecture has been authored in Verilog code for CSLA using D-Latch and its synthesis was done with Xilinx XST. Xilinx ISE Foundation 12.3 has been used for performing mapping, placing and routing. For behavioral simulation place and route simulation ISE simulator has been used. The Synthesis tool was configured to optimize for area and high effort considerations. The interest of the project work is an attempt to obtain a CSLA using D-Latch architecture.

In our proposed design, we are implementing the CSLA in such a way that, it is balancing in between Area and Speed. Here we have reduced the Area while increasing the Speed. So, we can say that, it is the tradeoff between Area and Speed. In our design, we can achieve an Area efficient CSLA with optimized Speed.

As shown in Fig. 1(a), the SCG unit of the conventional Carry Select Adder is composed of two n-bit RCAs that is ripple carry adders, where HSG, HCG, FSG, and FCG represent half-sum generation, half-carry generation, full-sum generation, and full-carry generation, respectively. Where n is the adder bit-width. The logic operation of the n-bit RCA is performed in four stages: 1) half-sum generation which is specified as HSG 2) half-carry generation which is specified HCG 3) full-sum generation which is specified as FSG and 4) full carry generation which is specified as FCG. For example if two n-bit operands are added in the conventional CSLA, then RCA-1 and RCA-2 generate n-bit sum defined as s0 and s1 and output-carry which are as defined as c_out^0 and c_out^1 are the corresponding to carry input as c_in^0 and c_in^1, respectively.

As shown in Fig. 2, the RCA calculates n-bit sum s_i^0 and c_out^0 corresponding to c_in^0 = 0. The BEC unit receives s_i^0 and c_out^0 from the RCA and generates (n + 1)-bit excess-1 code. The most significant bit (MSB) of BEC represents c_out^1, in which n least significant bits (LSBs) represent s_i^1. The logic expressions

As shown in Fig. 1(a), the conventional Carry Select Adder is composed of two n-bit RCAs that is ripple carry adders, where HSG, HCG, FSG, and FCG represent half-sum generation, half-carry generation, full-sum generation, and full-carry generation, respectively. Where n is the adder bit-width. The logic operation of the n-bit RCA is performed in four stages: 1) half-sum generation which is specified as HSG 2) half-carry generation which is specified HCG 3) full-sum generation which is specified as FSG and 4) full carry generation which is specified as FCG. For example if two n-bit operands are added in the conventional CSLA, then RCA-1 and RCA-2 generate n-bit sum defined as s0 and s1 and output-carry which are as defined as c_out^0 and c_out^1 are the corresponding to carry input as c_in^0 and c_in^1, respectively.

\[
\begin{align*}
\text{s}_1^0 &= \text{A}_0 \oplus \text{B}_i \oplus \text{c}_i^{\lnot} \oplus \text{c}_i^0, \\
\text{c}_1^0 &= \text{A}_0 \oplus \text{B}_i \oplus \text{c}_i^{\lnot} \oplus \text{c}_i^0, \\
\end{align*}
\]

for 1 \leq i \leq n − 1. We can find from (1a)–(1c) and (3a)–(3d) that, in the case of the BEC-based CSLA, c_1^1 depends on s_1^0, which otherwise has no dependence on s_1^1 in the case of the conventional CSLA. The BEC method therefore increases data dependence in the CSLA.

We have considered logic expressions of the conventional CSLA and made a further study on the data dependence to find an optimized logic expression,
and y to the two inputs and S (for sum) and C (for carry) to the outputs. The truth table for the half adder is listed in Table 4.3. The C output is 1 only when both inputs are 1. The S output represents the least significant bit of the sum. The simplified Boolean functions for the two outputs can be obtained directly from the truth table. The simplified sum-of-products expressions are

\[S_i = a_i \ xor \ b_i \]

\[C_{i+1} = a_i \ and \ b_i \]

The logic diagram of the half adder implemented in sum of products is shown in Fig. 4.5(a). It can be also implemented with an exclusive-OR and an AND gate as shown in Fig. 4.5(b). This form is used to show that two half adders can be used to construct

![Fig. 3: 1-bit Half Adder.](image)

Consider a simple binary add with two n-bit inputs A; B and a one-bit carry-in Cin along with n-bit output S.

\[S = A + B + Cin \]

Where \(A = an-1, an-2, \ldots, a0; B = bn-1, bn-2, \ldots, b0. \)

The + in the above equation is the regular add operation. However, in the binary world, only Boolean algebra works. For add related operations, AND, OR and Exclusive-OR (XOR) are required. In the following documentation, a dot between two variables (each with single bit), e.g. \(a _ b \) denotes ‘a AND b’. Similarly, \(a + b \) denotes ‘a OR b’ and \(a _ b \) denotes ‘a XOR b’. Considering the situation of adding two bits, the sum s and carry c can be expressed using Boolean operations mentioned above.

\[S_i = a_i \ xor \ b_i \]

\[C_{i+1} = a_i \ and \ b_i \]

The Equation of \(C_{i+1} \) can be implemented as shown in Fig.2.1. In the figure, there is a Half adder, which takes only 2 input bits. The solid line highlights the critical path, which indicates the longest path from the input to the output. Equation of \(C_{i+1} \) can be extended to perform full add operation, where there is a carry input.

\[S_{i+1} = a_i \ xor \ b_i \ xor \ c_i \]

\[C_{i+1} = a_i \ and \ b_i \ or \ c_i \ and \ b_i \]
Delay:
The latency of a 4-bit ripple carry adder can be derived by considering the worst case signal propagation path. We can thus write the following expressions:

\[TRCA-4bit = TFA(A0,B0→Co)+TFA(Cin→Ci)+TFA(Cin→C2)+TFA(Cin→S3) \]

And, it is easy to extend the 4-bit RCA:

\[TRCA-kbit = TFA(A0,B0→Co)+(K-2)*TFA(Cin→Ci)+TFA(Cin→Sk-1). \]

2.3. Carry Look-Ahead Adder:

Look ahead carry algorithm speeds up the operation to perform addition, because in this algorithm carry for the next stages is calculated in advance based on input signals. The carry propagation time is an important attribute of the adder because it limits the speed with which two numbers are added. Although the adder—or, for that matter, any combinational circuit—will always have some value at its output terminals, the outputs will not be correct unless the signals are given enough time to propagate through the gates connected from the inputs to the outputs. Since all other arithmetic operations are implemented by successive additions, the time consumed during the addition process is critical. An obvious solution for reducing the carry propagation delay time is to employ faster gates with reduced delays. However, physical circuits have a limit to their capability. Another solution is to increase the complexity of the equipment in such a way that the carry delay time is reduced.

\[Si = Xi \text{xor} Yi \text{xor} Ci \quad \text{-- Sum Generation} \]

Thus, for 4-bit adder, we can extend the carry, as shown below:

\[
\begin{align*}
C1 &= G0 + P0 \cdot C0 \\
C2 &= G1 + P1 \cdot C1 + G1 \cdot P1 + G0 \cdot P0 + P0 \cdot C0 \\
C3 &= G2 + P2 \cdot C2 + G2 \cdot P2 + G1 \cdot P1 + G0 \cdot P0 + P0 \cdot C0 \\
C4 &= G3 + P3 \cdot C3 + G3 \cdot P3 + G2 \cdot P2 + G1 \cdot P1 + G0 \cdot P0 + P0 \cdot C0
\end{align*}
\]

2.4. Carry Save Adder:

The carry-save adder reduces the addition of 3 numbers to the addition of 2 numbers. The propagation delay is 3 gates regardless of the number of bits. The carry-save unit consists of n full adders, each of which computes a single sum and carries bit based solely on the corresponding bits of the three input numbers.

Let X and Y are two 4-bit numbers and produces partial sum and carry as S and C as shown in the below:

\[Si = Xi \text{xor} Yi \quad ; \quad Ci = Xi \text{and} Yi \]

The final addition is then computed as:

1. Shifting the carry sequence C left by one place.
2. Placing a 0 to the front (MSB) of the partial sum sequence S.
3. Finally, a ripple carry adder is used to add these two together and computing the resulting sum.

\[\text{Carry Save Adder Computations:} \]

\[
\begin{align*}
X &= 10011 \\
Y &= 11001 \\
Z &= +01011 \\
S &= 00011 \\
C &= +11011 \\
\text{SUM:} &= 110111
\end{align*}
\]

2.5. Carry Select Adder:

A carry-select adder is divided into sectors, each of which—except for the least-significant—performs two additions in parallel, one assuming a carry-in of zero, the other a carry-in of one. A four bit carry select adder generally consists of two ripple carry adders and a multiplexer.

The carry-select adder is simple but rather fast, having a gate level depth of $O(\sqrt{n})$. Adding two n-
bit numbers with a carry select adder is done with two adders (two ripple carry adders) in order to perform the calculation twice, one time with the assumption of the carry being zero and the other assuming one.

III. THE D-TYPE FLIP FLOP

The working of D flip flop is similar to the D latch except that the output of D Flip Flop takes the state of the D input at the moment of a positive edge at the clock pin (or negative edge if the clock input is active low) and delays it by one clock cycle. That’s why, it is commonly known as a delay flip-flop. The D Flip Flop can be interpreted as a delay line or zero order hold. The advantage of the D flip-flop over the D-type “transparent latch” is that the signal on the D input pin is captured the moment the flip-flop is clocked, and subsequent changes on the D input will be ignored until the next clock event.

D FLIP FLOPS AS DATA LATCHES:

As well as frequency division, another useful application of the D flip flop is as a Data Latch. A data latch can be used as a device to hold or remember the data present on its data input, thereby acting a bit like a single bit memory device and IC’s such as the TTL 74LS74 or the CMOS 4042 are available in Quad format exactly for this purpose. By connecting together four, 1-bit data latches so that all their clock inputs are connected together and are “clocked” at the same time, a simple “4-bit” Data latch can be made as shown below.

4-BIT DATA LATCH:

Fig. 7: 4-bit Data Latch

Proposed Adder Design:

The proposed carry select adder is based on the logic formulation given in (4a)–(4g), and the design of circuit is shown in Fig. 3(a). It is having one full sum generation (FSG) unit, one half sum generation (HSG) unit, one Carry Generation unit, and one Carry Sum unit. The carry generation unit is composed of two CGs (CG0 and CG1) corresponding to input-carry ‘0’ and ‘1’. The half sum generation takes two n-bit operands to generate half-sum word s0 of width n-bit and half-carry word c0 of width n bits. Both CG0 and CG1 receive s0 and c0 from the HSG unit and generate two n-bit full-carry words c1(i) and c1(i) corresponding to input-carry ‘0’ and ‘1’, respectively. The logic diagram of the HSG unit is shown in Fig. 3(b). The logic circuits of CG0 and CG1 are optimized to take advantage of the fixed input-carry bits. The optimized designs of CG0 and CG1 are shown in Fig. 3(c) and (d), respectively.

The CS unit selects one final carry word from the two carry words available at its input line using the control signal c_in. It selects c0 1 when c_in = 0; otherwise, it selects c1 1. The CS unit can be implemented using an n-bit 2-to-1 MUX. However, we find from the truth table of the CS unit that carry words c0(i) and c1(i) follow a specific bit pattern. If c1(i) = ‘1’, then c1(i) = 1, irrespective of s0(i) and c0(i), for 0 ≤ i ≤ n − 1. This feature is used for logic optimization of the CS unit. The optimized design of the CS unit is shown in Fig. 3(e), which is composed of n AND–OR gates. The final carry word c is obtained from the CS unit. The MSB of c is sent to output as c_out, and (n − 1) LSBs are XORed with (n − 1) most significant bit(MSB) of half-sum (s0) in the full sum generation(FSG) [shown in Fig. 3(f)] to obtain (n − 1) MSBs of final-sum (s). The least significant bit(LSB) of s0 is XOR with c_in to obtain the LSB of s.

The major speed limitation in any adder is in the production of carries and many authors have considered the addition problem. This logic can be implemented with Carry Select Adder using D-Latch to achieve power-efficient and high-speed data path logic systems. The proposed 64-bit Carry Select Adder compared with the Carry Select Adder (CSLA) and Regular 64-bit Carry Select Adder and also with BEC 64-bit Carry Select Adder.

How the goal of fast addition is achieved using BEC together with a multiplexer (mux) is described in Fig.1.2, one input of the 8:4 mux gets as it input (B3, B2, B1, and B0) and another input of the Mux is the BEC output. This produces the two possible partial product results in parallel and the Muxes are used to select either BEC output or the direct inputs according to the control signal Cin.

The Boolean expressions of 4-bit BEC are listed below. (Note: functional symbols, ~ NOT, & AND, ^ XOR)

\[
\begin{align*}
X_0 &= \sim B_0 \\
X_1 &= B_0 \lor B_1 \\
X_2 &= B_2 \lor (B_0 \land B_1) \\
X_3 &= B_3 \lor (B_0 \land B_1 \land B_2)
\end{align*}
\]
The AND, OR, and Inverter (AOI) implementation of a 2:1 MUX, FA are shown in below. The gates between the dotted lines are performing the operations in parallel and the numeric representation of each gate indicates how much delay is provided. AND, OR, and Inverter are the basic gates for designing any digital circuits so the these are consider for the delay and area, those are having equal delay and area of 1-unit. If we add more number of gates through longest path it gives maximum delay.

The counting of AOI Gates a required for each logic block to decide the area evaluation. Based on this approach, the CSLA adder blocks of 2:1 mux, Half Adder (HA), and FA are evaluated and listed in Table 2.

IV. RESULTS

![Fig 9: RTL Schematic view of 64 bit CSLA with D-Latch](image)

![Fig 10: Waveform of 64 bit CSLA with D-Latch](image)

Table 1: RESULTS FOR THE SELECTED DEVICE XC3S1600E-5FG320

<table>
<thead>
<tr>
<th>Device</th>
<th>RCA</th>
<th>BEC</th>
<th>D-Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>40</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Area</td>
<td>100</td>
<td>150</td>
<td>10</td>
</tr>
</tbody>
</table>

![Fig 11: Graphical representation of Delay in 64-bit CSLA using D-Latch](image)

V. CONCLUSION

Addition is the most common and often used arithmetic operation on microprocessor, digital signal processor, especially digital computers. Also, it serves as a building block for synthesis all other arithmetic operations. Therefore, regarding the efficient implementation of an arithmetic logic unit, the adder structures become a very critical hardware unit.

A D-LATCH based CSLA architecture is proposed in this project to reduce the delay of CSLA architecture than the recently proposed BEC based CSLA architecture. The functionality verification of the design is carried out by using ISE Simulator and the synthesis is also carried out by the XILINX ISE 12.3i. The HDL used for obtaining an RTL schematic and for designing the modules is VERILOG. From the graphs and the tables it is concluded that, the proposed D-LATCH based design is having less delay when compare to the BEC based and RCA based architectures.

VI. FUTURE SCOPE

With the increase in silicon densities, it is becoming feasible for compression systems to be implemented in a single chip. Here we have implemented CSLA using D-latch approach with less Delay. In future, we further reduce Area and Power parameters without the penalty of resources.
VII. REFERENCES

AUTHOR’s PROFILE

Dr. Ramesh Challagundla received his M.Sc. Degree in Phy. Electronics from Meerut University which is recognized as equivalent to B.E (ECE) in the year 1988, M.E. with specialization in Applied/Power Electronics, from Gulbarga University in 1991, was granted A.M.I.E. In 1997 and Ph.D. from Andhra University College of Engineering, Andhra university, Visakhapatnam. He joined as service engineer in Hast Alloy Castings Ltd in the year 1990. After serving a year and half, he switched over to teaching and served as Lecturer in R.E.C. Affiliated to Gulbarga University during 1992-1993. He joined EEE Department, in GITAM Visakhapatnam and served as Lecturer during 1993-96. During 1996-97 he served as Lecturer in Bhilai Institute of Technology, during 1997-98 served as Assistant Professor in Birla Institute of Technology, Mesra, Ranchi, during 1998-2001 served as Assistant Professor in GITAM College of Engineering, Visakhapatnam and from 2001 to 2012 with ANITS. From 2012-2013 he worked as principal in RISE Ongole. Currently working as Professor in the department of ECE and Principal at Pydah College of Engineering & Technology, Gambheeram, Visakhapatnam. Ratified as Professor by the expert committee of Andhra University in the field of ECE constituted by Vice-Chancellor, who himself was the chairman for the selection committee.