Designing A Switch For Lighter Loads With Boundary Conditions

ABHINAV RAVICHANDER
Assistant Professor, Dept of EEE
Sree Dattha Institute of Engineering and Science
Hyderabad, T.S, India

USIRIKAPALLI SINDHU
M.Tech Student, Dept of EEE
Sree Dattha Institute of Engineering and Science
Hyderabad, T.S, India

Prof J. RANGA
Head of Dept of EEE
Sree Dattha Institute of Engineering and Science
Hyderabad, T.S, India

Abstract: The APS control can be used to lessen the current force on switches see how to avoid load as the traditional interleaving control can be used to help keep better performance in heavy load. This paper looks into a manuscript pulse width modulation (PWM) plan for 2-phase interleaved boost ripper tools with current multiplier for fuel cell power system by mixing alternating phase shift (APS) control and traditional interleaving PWM control. The boundary condition for swapping between APS and traditional interleaving PWM control comes. In line with the aforementioned analysis, a complete power range control mixing APS and traditional interleaving control is suggested. Loss breakdown analysis can also be given look around the efficiency from the ripper tools. Finally, it's verified by experimental results. The efficiency from the ripper tools with IGBT and fast recovery diode in CCM is greater than that in BCM. In CCM, the efficiency from the ripper tools with fast recovery diode is just .37% under by using SiC diode.

Keywords: Boost Converter; Fuel Cell; Interleaved; Loss Breakdown; Voltage Multiplier;

I. INTRODUCTION

For any typical 10-kW proton exchange membrane fuel cell, the output current comes from 65 to 107 V. However, the input current from the three phase electricity/ac ripper tools must be around 700 V, the current gain from the electricity/electricity ripper tools between fuel cell and also the electricity/ac ripper tools is going to be from 6 to 11 V. A higher step-up electricity/electricity ripper tools is required for that system. The electricity/electricity ripper tools will produce a high frequency input current ripple that will lessen the existence duration of the fuel cell stack. Fuel cell is among promising choices because of its benefits of zero emission, low noise, greater power density, and being easily modularized for portable power sources, electric automobiles, distributed generation systems, etc [1]. High step-up ratio could be accomplished by mixing classical boost ripper tools with switched inductors, combined inductors, high-frequency transformer, or switched capacitor. They are able to obtain high step-up ratio rich in efficiency, low-current stress, and occasional electromagnetic interference. To be able to reduce output fuel cell stack output current ripple or even the electricity/electricity ripper tools input current ripple, whether passive filter or active filter may be used, however, this will raise the complexity from the system. An interleaved boost ripper tools with current multiplier was suggested. Its current gain was elevated as much as (M 1) occasions (M is the amount of the current multiplier) from the classical boost ripper tools with similar duty cycle D minimizing current stress. Besides, it's lower input current ripples and output current ripples as compared to the classical boost ripper tools. This paper looks into a manuscript PWM plan for 2-phase interleaved boost ripper tools with current multiplier for fuel cell power system by mixing APS and traditional interleaving PWM control. The APS control can be used to lessen the current force on switches see how to avoid load as the traditional interleaving control can be used to help keep better performance in heavy load. The boundary condition for swapping between APS and traditional interleaving PWM control comes. In line with the aforementioned analysis, a complete power range control mixing APS and traditional interleaving PWM control is suggested. Loss breakdown analysis can also be given look around the efficiency from the ripper tools. Finally, it's verified by experimental results.

Fig.1: Framework of proposed system
II. SYSTEM DESIGN

The whole process of a switching cycle from the ripper tools could be split into six stages at boundary condition that the current force on switch is going to be bigger than 1/2 of the output current with traditional interleaving control. Exactly why there's two parts within the boundary constraint would be that the duty cycle D varies using the load once the ripper tools works in DCM. For any given application, the current gain from the electricity/electricity ripper tools is decided [2]. After which, the minimum duty cycle that may maintain low-current stress in primary power products with traditional interleaving control will be presented. Once the ripper tools works over the boundary condition, the circuit parameters have been in Zone A. The ripper tools could achieve halved current force on switches with traditional interleaving control using the duty cycle over the solid red line. When lowering the burden towards the solid red line at boundary condition. Within our 1-kW prototype design, the input current from the ripper tools is 86-107 V, and also the output current from the ripper tools is 700 V. Based on the principle of APS, APS control is suggested to resolve the sunshine load trouble with duty cycle under .5. Using the load growing, the job cycle is going to be elevated too. Once the duty cycle is elevated to .5, the APS control is going to be modified to become traditional interleaving control with halved switching frequency. Therefore, you'll be able to combine both APS control and traditional interleaving control to manage the ripper tools for full power range operation. Thinking about the variation from the input current from 86 to 107 V for 1-kW fuel cell operation and also the output current from the ripper tools 700 V, the minimum duty cycle of traditional interleaving control differs from $D_{m1} = .443$ to $D_{m2} = .456$. APS control is going to be used because traditional interleaving control can't be effective to keep low-current force on switches. The swapping between your APS control and traditional interleaving control in the region $D_{m1} = D = D_{m2}$ is accomplished by discovering the current stress from the switch S1. Once the current stress from the switch S1 is greater than 1/2 of the output current, the control is altered from interleaving control to APS control. When the traditional interleaving control is initially utilized in the 2nd area ($D_{m1} = D = D_{m2}$) and when the switch S1 current stress is bigger than 1/2 of the output current, the logic unit output CMP. To have better dynamic performance operation, dual loop control is adopted, where the inner current loop would be to control the input inductor current as the outer current loop would be to control the output current. K_{ip} and K_{ii} would be the PI controller parameters from the inner current loop, while K_{ip} and K_{ii} would be the PI controller parameters from the outer current loop [3]. As the price of fuel cell continues to be high, you should increase the efficiency from the power ripper tools for fuel cell-based power system to be able to reduce its operation cost while increasing the effective use of fuels. Therefore, loss breakdown analysis is required. The nominal power the ripper tools is 1 kW for loss breakdown analysis and prototype setup, and also the input current is 100 V as the output current is 700 V with switching frequency $f_{sw} = 10$ kHz. The ripper tools could be employed in CCM at nominal load with input current ripple ratio $r = .37$ and also the inductor L_1 and L_2 is 714.3 µH. The inductor is made using the amorphous core [4]. As proven in Fig. 10, the primary areas of losing likewise incorporate the passing lack of the IGBT. In comparison with CCM, there's no fast recovery loss despite fast recovery diodes in BCM. However, the inductor loss such as the core loss and also the wire loss is elevated in BCM because the current ripple is elevated from .37 to .6. In BCM, the efficiency from the ripper tools could be 97.09% with SiC diode and 97.06% with fast recovery diode. The efficiency from the ripper tools with IGBT and fast recovery diode in CCM is greater than that in BCM. In CCM, the efficiency from the ripper tools with fast recovery diode is just .37% under by using SiC diode. Therefore, we use IGBT and fast recovery diode in CCM for experiments. The experimental answers are provided to verify the prior analysis. With $R = 478\, \Omega$, the output power is more than 1 kW, and $K = .048 > K_{crit} = .011$, the ripper tools is made to be employed in Zone A. More experiments are carried out to determine the current force on power switches in most power selection of the burden. Because the current ripple through capacitors C2 has bad impact on their lifetime and reliability, you should test if the maximum current ripple is elevated when working with APS control [5]. Thinking about the symmetry from the ripper tools, we simply test the present through C1. With APS control, the present ripple isn't elevated but reduced to become 3.21 A underneath the same load, and also the RMS of the present through capacitor C1 is reduced to become .538 A.

III. CONCLUSION

Once the ripper tools works over the boundary condition, the circuit parameters have been in Zone A. The ripper tools could achieve halved current force on switches with traditional interleaving control using the duty cycle over the solid red line. Using the suggested control plan, the ripper tools is capable of low current force on switches in most
power selection of the burden that is verified by experimental results. The boundary condition comes after stage analysis within this paper. The boundary condition classifies the operating states into two zones, i.e., Zone A and Zone B. The standard interleaving control can be used in Zone some time APS control can be used in Zone B. And also the swapping function is accomplished with a logic unit.

IV. REFERENCES

