Low Power Compressor Based MAC Architecture for DSP Applications

YETURU. PARVATHI
Pursuing M.Tech (VLSI&ESD) from SKR College of Engineering & Technology, Manubolu, SPSR Nellore,AP.

SIDDU. PENCHALAIAH
M. Tech, Assistant Professor in Department of ECE, SKR College of Engineering & Technology, Manubolu, SPSR Nellore, AP.

Abstract: This paper shows the low power blower based Multiply-Accumulate (MAC) design for DSP applications. In VLSI, exceptionally registered math cells including adders and multipliers are the most plentifully utilized parts. Productive usage of math rationale units, skimming point units and other devoted utilitarian segments are used in the vast majority of the chip and computerized flag processors (DSPs). Along these lines in this concise, blower circuit has been outlined for the low power applications and furthermore the effect of datapath circuits has been illustrated. The proposed low power blower design was connected to MAC unit and looked at against the regular blower based MAC units and watched that the proposed engineering has decreased critical measure of spillage control.

1. INTRODUCTION
Since the most recent decade the semiconductor business has encountered an exponential development of mix of advanced multi-media applications into convenient devices. The significant worry of compact devices is the battery life, which impacts the genuine - time preparing applications and their dynamic scope of information signals for added substance highlights. It is the high time to investigate the testing criteria of these rising low power, low region and elite computerized flag handling chips [1].

In computerized VLSI circuits, calculation is the basic part and it chooses the power utilization and working rate of the plans. For calculations number juggling circuits includes adders and multipliers; which are the most abundantly utilized parts. Advanced flag processors performing sifting, convolution and so forth, depends on the effective usage of these viper, multiplier and MAC number juggling units.

As the criticality of multipliers chooses the power utilization and working rate of the computerized circuits, there is potential at circuit configuration level to upgrade the power and defer requirements. Numerous specialists in the past have created and exhibited a few models to enhance the effectiveness of the multipliers. Stall encoders and its adjustments were created to diminish the deferral by decreasing number of columns in the Partial Product Generation stage. Blowers were used in the halfway item decrease stage to expand the increase activity speed [3 - 5]. Integral Pass transistor rationale based adiabatic 8-bit multiplier is composed in [6] to diminish the deferral and power utilization of the multiplier engineering. Vedic sutras were likewise utilized in the multiplier engineering to build the speed of the MAC designs [7]. To decrease the defer facilitate in the MAC designs, the convey spread expansion phase of multiplier and viper phase of gather is combined utilizing blowers in this work.

Low power blower design is proposed in this brief to diminish the power utilization of the MAC engineering since the nearness of more number of blowers. The effect of the circuit configuration level or the datapath improvements is tended to at the MAC level for DSP applications. In MAC, furthermore the convey engender expansion engaged with multiplier and gather stages are converged to endeavor and increment the quantity of blowers in the MAC designs. Outlines were represented in ASIC and FPGA spaces according to the standard plan technique. Remaining segments of the paper are sorted out as takes after. Blower and MAC designs are examined and the restrictions of existing structures are described in area II. Results are assessed in segment III and the paper is closed in segment IV. Last segment gives the references.

2. ARCHITECTURE
A. Compressor
Compressors are the digital circuits which have the capability to add five/six/seven bits at a time and hence called as column compressors. A typical five input compressor is illustrated in this brief. It takes 4 regular inputs and 1 intermediate carry-in input and generates 1 sum bit, 1 carry-out bit and another intermediate carry bit. Intermediate carry bits are the carry-in and carry-outs (called as horizontal carry propagation) from previous and to next stage compressors. Carry-out (also called as vertical carry) bit is final carry generated along with the sum bit.

Since compressors forms the basic and critical components for multipliers and large-input adders, several compressors architectures were developed in the past to address several constraints. Some of the compressor architectures described in the past are shown in Fig. 1 & Fig. 2 [8, 9].
Fig. 1: Full Adder based Compressor [8]
Compressor architecture shown in Fig. 1 is built using the full-adders. This architecture has only two cells and will have minimum interconnects but each of the cell needs to generate the sum and carry path and one of the path is dependent on the other. This requires larger drive strength to drive the chain of compressors and hence the power consumption will be higher. The higher drive strength will significantly have the reduced delay.

Fig. 2: David Harris Compressor cell [9]

Fig. 3 shows the proposed compressor architecture. The proposed compressor architecture is built with larger fan-in gates and also using separate logics for sum and carry paths. In the sum path four 2 input XOR cells are replaced by two 3 input XOR cells and in the carry path two 2 input AND cells & one 2 input OR cells are replaced by one 6 input AND-OR (AO222) logic cell. Larger fan-in gates covers large part of the logics and helps in minimizing the number of gates required for implementation. Lesser gates lead to smaller area and minimum interconnect delays. Thus the proposed compressor architecture helps in reducing the power consumption.

Fig. 3: Proposed compressor Cell

Thus the proposed compressor architecture enables new features like design specific/constraint specific architectures and allows utilizing for low power applications. Optimizations provided in the proposed architectures are,
1. Minimum interconnect in sum-path reduces the interconnect delay and associated glitches
2. Reduced power consumption with minimum interconnects
3. Independent carry logic to reduce the horizontal carry delay

B. Multiply-Accumulate Unit

MAC is the basic and most frequently used component in DSP to perform filtering, convolution and etc to accelerate the FIR or FFT computations [2]. Regularly MAC unit contain multiplier, adders and registers as shown in Fig. 4, where the previous output of the MAC unit is added with the multiplier output and accumulated.

Fig. 4: Regular MAC architecture

Multipliers are implemented in three stages namely: partial product generation, partial product reduction and carry propogate addition. Regular architectures utilize the half and full adders in the partial product stages, but due to its performance limitation compressor cells were utilized. Some of the past architecture’s reduced the number of reduction steps in the partial product reduction stage by introducing booth encoding in the partial product generation stage, to reduce overall delay [3-5].

Use of compressors in the multiplier will reduce the number of gates for implementation which inturn reduces the number of interconnects. This results in reduced interconnect delay and glitches associated with-it, yielding a low power design. Thus the efficient multiplier will improve the efficiency the MAC unit.

The use of circuit level design specifically designed for particular constraint will be more efficient in ASIC designs. For example the use of proposed low power compressor architecture improves the power efficiency and suits for low power applications. To demonstrate the impact of compressor architecture a MAC unit architecture which contains more number of compressors is chosen from [2].

In [2], author has used the compressors in multipliers in the partial product reduction and in
accumulation stage of the MAC unit, where the carry propagate stage of the multiplier is merged with the input of accumulate add stage. Fig. 5 shows the state of the art MAC architecture. Totally 29 compressors were utilized to implement the MAC unit of Fig. 5. Other than compressors, half and full adders were also required to implement.

![State of the art MAC architecture](image)

Fig. 5: State of the art MAC architecture [2]

Both the conventional and proposed compressor architectures were applied in the state of the art MAC architecture, to illustrate the impact of compressor architectures.

3. RESULTS & DISCUSSIONS

Both the regular and proposed architectures at the compressor and MAC unit level were designed and modeled using Verilog HDL. Designs were functionally verified using Mentor graphics Modelsim simulator using waveform editor and were synthesized by targeting to TSMC’s 65nm technological library node using Cadence RTL compiler. The designs were also synthesized under FPGA domain by targeting the virtex 7 device. Results of the compressor and MAC units were benchmarked as per the standard design methodology for both ASIC and FPGA domains.

Table 1: Comparison of the synthesis results of existing and proposed compressor architectures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>27.36</td>
<td>20.16</td>
<td>20.88</td>
</tr>
<tr>
<td>Delay</td>
<td>0.412</td>
<td>0.214</td>
<td>0.333</td>
</tr>
<tr>
<td>Dp</td>
<td>1.418</td>
<td>1.312</td>
<td>1.083</td>
</tr>
<tr>
<td>Lp</td>
<td>0.285</td>
<td>0.308</td>
<td>0.188</td>
</tr>
<tr>
<td>Tp</td>
<td>1.704</td>
<td>1.65</td>
<td>1.271</td>
</tr>
</tbody>
</table>

Table 1 shows the results of the regular and proposed compressor architectures. It can be observed that the proposed compressor architecture is more efficient in all the design parameters against the architecture of [9]. As mentioned in the architecture section, the large number of less fan-in gates requires more number of gates and number of interconnects will be more, due to which the area required is more and the dynamic power consumption is also higher. More number of interconnects and less fan-in logic gates has increased the delay and power consumption of the compressor architecture of [9].

Only two cells in compressor architecture of [8] reduces the interconnect delay and is reflected as reduced delay. The dependency of one among the sum and carry path of full adder requires higher drive strength to drive the signal faster; resulting in higher power consumption than the proposed compressor architecture.

As the proposed compressor architecture utilizes the larger fan-in gates, its transistor stack will be higher causes to have higher resistance between the power supplies and results in reduced leakage power. Since the proposed architecture generates the sum and carries simultaneously; it doesn’t require higher drive strength signal.

Table 2 shows the results of the MAC units with conventional and proposed compressor architectures. Similar to Table 1, results at the MAC level also yielded the efficient results. Here also a significant amount of power consumption has been reduced of the proposed MAC unit having proposed compressor architectures. This suggests that the proposed architecture designed specifically towards power constraint has behaved similar at the cell and at the sub-systems level. It also proves that the optimizations at the circuit design level will have impact at the sub-system level. From these it can be encouraged that the optimizations at the circuit design level can be applied to any level of hierarchical abstractions. Further the proposed architecture can be generalized for any bit-width and at any level of abstraction in the design hierarchy.

Table 2: Comparison of the synthesis results of MAC architectures using existing and proposed Compressor architectures in ASIC domain

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>273.12</td>
<td>106.61</td>
<td>108.34</td>
</tr>
<tr>
<td>Delay</td>
<td>2.598</td>
<td>2.546</td>
<td>2.874</td>
</tr>
<tr>
<td>Dp</td>
<td>7.714</td>
<td>62.388</td>
<td>0.0320</td>
</tr>
<tr>
<td>Lp</td>
<td>12.57</td>
<td>83.923</td>
<td>0.0089</td>
</tr>
<tr>
<td>Tp</td>
<td>90.11</td>
<td>76.782</td>
<td>75.324</td>
</tr>
</tbody>
</table>

The circuit level design optimization was also illustrated in the FPGA design and the synthesis results are tabulated in Table 3. In FPGA domain the designs were targeted to Virtex 7 family. It can be observed from the Table 2 and Table 3 that designs behave differently in different domains due to different mapping logics and hence it suggests that the optimizations should be domain specific. In ASIC the logics are mapped to
standard cells of the libraries and in FPGA domain the logics are mapped to up tables (LUTs). Table 3 shows that the proposed architecture has better results than the existing architectures in FPGA domain.

Existing compressor architecture of [8] has one interconnect and three outputs, hence it requires four LUTs to implement one compressor cell. Since the logics of proposed compressor architecture has been implemented parallelly; (parallel sum and carry logics) interconnect has been avoided to reduce the LUT requirements to 3 against the 4 numbers of existing compressor architecture.

Table 3: Comparison of the synthesis results of MAC architectures using existing and proposed Compressor architectures in FPGA domain

<table>
<thead>
<tr>
<th>Design</th>
<th>Bit Width</th>
<th>Using Full Adders [8]</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2 Compressor cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slices</td>
<td>257</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>LUTs</td>
<td>230</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>FFs</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>9.728</td>
<td>8.958</td>
<td></td>
</tr>
<tr>
<td>Timing</td>
<td>40.83</td>
<td>40.39</td>
<td></td>
</tr>
<tr>
<td>Dp</td>
<td>547.35</td>
<td>546.84</td>
<td></td>
</tr>
<tr>
<td>Qp</td>
<td>597.18</td>
<td>506.13</td>
<td></td>
</tr>
</tbody>
</table>

As more number of compressors are required in the MAC architecture, the proposed MAC architecture requires less number LUTs and it constitutes to lesser interconnects and resulted in the reduced delay against the existing MAC architecture with compressor architecture of [8]. Since the numbers of LUTs are higher in existing MAC architecture and as per the relation larger the area; higher will be power consumption, the power consumption of the existing MAC architecture is higher than the proposed MAC architecture. More number of interconnects also contributes to power consumption. Thus the parallelism in the proposed architecture has better efficiency than the exiting architectures. Further improvements can be obtained by designing as per the FPGA architectures.

From the results of Table 2 and Table 3, it can be suggested that the proposed architecture holds good and true for both ASIC and FPGA domains. It can also from the above result tables discussions that the proposed architecture can be generalized for n-bit MAC and are independent of Number Representation (Radix, Base) & Bit Width. Increase in the MAC bit-width, requires more number of compressors and this optimization impact will be higher. Approximately the increase in bit-width size from N-bits to 2N-bits, the number of compressors would be increased by approximately 5 times.

4. CONCLUSION

Design and domain specific low power compressor based MAC architecture has been demonstrated in this work. The importance of circuit design level and its impact for DSP applications is addressed. Use of higher fan-in gates and its merits are discussed for the low power applications. The proposed architectures have yielded better efficiencies in the ASIC and FPGA domain when modeled in Verilog HDL and synthesized with Cadence RTL compiler and Xilinx ISE respectively. Designs were mapped to TSMC’s 65nm technology node and Virtex 7 FPGA family respectively.

5. REFERENCES

AUTHOR's PROFILE

Yeturu. Parvathi, Pursuing M.Tech (VLSI&ESD) from SKR College of Engineering & Technology, Manubolu, SPSR Nellore,AP.

Siddu. Penchalaiah, M.tech, Assistant Professor in Department of ECE, SKR College of Engineering & Technology, Manubolu, SPSR Nellore,AP.