SECURE DATA DISTRIBUTION FOR VIBRANT GROUPS IN THE CLOUD

Ch. Naveen, G.Charles Babu

Abstract


For the past few years, the technology of cloud computing has the extreme growth sections in the field of infrastructure and permits the consumers to make usage of applications devoid of installation and by means of internet access the personal files. Designing a competent and secure scheme of data sharing intended for groups in the cloud is not an uncomplicated mission because of the tricky issues. Well-organized methods which permit on-demand data accuracy confirmation on behalf of cloud users have to be considered in order to attain the assurances of cloud data integrity and accessibility and apply the excellence of cloud storage service. Measure up to the manner of single-owner manner where only the group manager can be capable to store up and amend information in the cloud, the manner of multiple-owner is suppler in practical functions. Mona, a secure scheme of multi-owner data sharing is intended for dynamic group in the cloud. To accomplish secure data sharing for vibrant groups in the cloud, we suppose to merge the group signature and encryption methods of dynamic broadcast. In the technique of Mona, any user in the group can possibly store up and allocate data files with others by means of the cloud. The revocation of user can possibly be attained devoid of updating the keys of private of the enduring users.


Keywords


Cloud computing; Data accuracy; Cloud storage service; Multi-owner data sharing; Mona;

References


E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing Remote Untrusted Storage,” Proc. Network and Distributed Systems Security Symp. (NDSS), pp. 131-145, 2003.

D. Naor, M. Naor, and J.B. Lotspiech, “Revocation and Tracing Schemes for Stateless Receivers,” Proc. Ann. Int’l Cryptology Conf. Advances in Cryptology (CRYPTO), pp. 41-62, 2001.

B. Waters, “Ciphertext-Policy Attribute-Based

Encryption: An Expressive, Efficient, and Provably Secure Realization,” Proc. Int’l Conf. Practice and Theory in Public Key Cryptography Conf. Public Key Cryptography, http://eprint.iacr.org/2008/290.pdf, 2008.

D. Boneh, X. Boyen, and E. Goh, “Hierarchical Identity Based Encryption with Constant Size Ciphertext,” Proc. Ann. Int’l Conf. Theory and Applications of Cryptographic Techniques (EUROCRYPT), pp. 440-456, 2005.

D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil Pairing,” Proc. Int’l Cryptology Conf. Advances in Cryptology (CRYPTO), pp. 213-229, 2001.

] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based Encryption for Fine-Grained Access Control of Encrypted Data,” Proc. ACM Conf. Computer and Comm. Security (CCS), pp. 89-98, 2006.

C. Delerablee, P. Paillier, and D. Pointcheval, “Fully Collusion Secure Dynamic Broadcast Encryption with Constant-Size Ciphertexts or Decryption Keys,” Proc. First Int’l Conf. Pairing-Based Cryptography, pp. 39-59, 2007.

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Computing,” Comm. ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010.

G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage,” Proc. Network and Distributed Systems Security Symp. (NDSS), pp. 29-43, 2005.

M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable Secure File Sharing on Untrusted Storage,” Proc. USENIX Conf. File and Storage Technologies, pp. 29-42, 2003.

D. Pointcheval and J. Stern, “Security Arguments for DigitalSignatures and Blind Signatures,” J. Cryptology, vol. 13, no. 3, pp. 361-396, 2000.

S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure, Scalable, and Fine-Grained Data Access Control in Cloud Computing,” Proc. IEEE INFOCOM, pp. 534-542, 2010.

B. Wang, B. Li, and H. Li, “Knox: Privacy-Preserving Auditing for Shared Data with Large Groups in the Cloud,” Proc. 10th Int’lConf. Applied Cryptography and Network Security, pp. 507-525, 2012.

R. Lu, X. Lin, X. Liang, and X. Shen, “Secure Provenance: The Essential of Bread and Butter of Data Forensics in Cloud Computing,” Proc. ACM Symp. Information, Computer and Comm. Security, pp. 282-292, 2010.

D. Boneh, B. Lynn, and H. Shacham, “Short Signature from the Weil Pairing,” Proc. Int’l Conf. Theory and Application of Cryptology and Information Security: Advances in Cryptology, pp. 514-532, 2001.


Full Text: PDF

Refbacks

  • There are currently no refbacks.




Copyright © 2012 - 2018, All rights reserved.| ijitr.com

Creative Commons License
International Journal of Innovative Technology and Research is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJITR , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.